
Smart Timers Manager Read me 



What is a timer? 

A timer is a function that is activated after a given period of time. The 

function can be executed as many times as you want. 

What is Smart Timers Manager? 

Smart Timers Manager is a C# package for UnityEngine that allows you to 

dynamically add, remove and monitor any active timer with ease.

Setup 

No specific setup needed anymore.



Editor Usage 

Smart Timers Manager comes with a GUI_TimersList component that 

allows you to add timers from inspector.

C# Usage 

The Smart Timers Manager’s main classes are Timer and TimersManager 

which are in the Timers namespace. Before starting to add timers make sure you 

included the namespace using Timers; A timer can be added by accessing one 
of the SetTimer() static methods from TimersManager class. 

IMPORTANT!
By default, setting the same timer method multiple times, will clear the 
previously running ones. If you want to stack timers, either use Lambda 
expression or set the optional param overrideOld to false. Note that if you are 
setting a timer by passing a Timer object, and it was previously started before 
and didn't finish, it will be overriden regardless of overrideOld's value

var timer = new Timer(this, 1f, 5, TimerFunc);
TimersManager.SetTimer(timer);
TimersManager.SetTimer(timer, overrideOld: false); // this will have no 
effect and the timer will be overrdien regardless

// these will stack too
TimersManager.SetTimer(this, 5f, () => TimerFunc); 
TimersManager.SetTimer(this, 3f, () => TimerFunc);

// these will stack
TimersManager.SetTimer(this, 5f, TimerFunc, overrideOld: false); 
TimersManager.SetTimer(this, 3f, TimerFunc, overrideOld: false);

// these will NOT stack as overrideOld is true by default
TimersManager.SetTimer(this, 5f, TimerFunc); 
TimersManager.SetTimer(this, 3f, TimerFunc);



Example: 

using UnityEngine; 
using Timers; 

public class Test : MonoBehaviour 
{ 

 void Timer1() 
 { 

 Debug.Log("Test"); 
 } 

 void ClearTimer1() 
 { 

 // Remove Timer1 
 TimersManager.ClearTimer(Timer1); 

 } 

 void ForgottenTimer() 
 {} 

 void Start() 
 { 

 // Log "Test" once every 2 seconds by calling Timer1() 
 TimersManager.SetLoopableTimer(this, 2f, Timer1); 

 // Call ClearTimer1() after 5 seconds 
 TimersManager.SetTimer(this, 5f, ClearTimer1); 

 // Call ForgottenTimer() once every second 50 times 
 TimersManager.SetTimer(this, 1f, 50, ForgottenTimer); 

 // Log "Remaining time: 50sec" which is 1f * 50 
 Debug.Log("Remaining time: "+ 

 TimersManager.RemainingTime(ForgottenTimer) +"sec"); 

 // Destroy this component after 10 seconds 
 TimersManager.SetTimer(this, 10f, delegate { Destroy(this); }); 

 } 
} 

Notice that ForgottenTimer lasts 50 seconds but the object is destroyed 

after 10 seconds. Because we set this as the timer’s owner, TimersManager can 

automatically remove ForgottenTimer as soon as the timer’s owner is garbage 

collected and becomes null. 



Don’t worry about adding timers with the same name from different 

classes, however, setting an active timer twice will override the previous one. 

Example: 

using Timers; 

public class Class1 
{ 

 public Class1() 
 { 

 // Call Timer1() from this class once every second 
 Timer t1 = new Timer(1f, Timer.INFINITE, Timer1); 
 TimersManager.SetTimer(this, t1); 

 } 

 void Timer1() { } 
} 

public class Class2 
{ 

 public Class2() 
 { 

 // Call Timer1() from this class once every 2 seconds 
 Timer t1 = new Timer(2f, Timer.INFINITE, Timer1); 
 TimersManager.SetTimer(this, t1); 

 // Set a timer that calls Timer2() once every second 
 Timer t2 = new Timer(1f, Timer.INFINITE, Timer2); 
 TimersManager.SetTimer(this, t2); 

 // This will override the previous one, 
 // calling Timer2() after 2 seconds ONLY ONCE! 
 TimersManager.SetTimer(this, 2f, Timer2); 

 } 

 void Timer1() { } 
 void Timer2() { } 

} 

Notice that you don’t have to extend MonoBehaviour in order to manage timers. 



Timer comparison 

A timer is greater than another timer if it has a higher frequency (calls per 

second), thus lower interval value. 

Example: 

// a timer that calls Timer1() every second 
Timer A = new Timer(1f, Timer.INFINITE, Timer1); 

// a timer that calls Timer2() 10 times per second 
Timer B = new Timer(0.1f, Timer.INFINITE, Timer2); 

if (A < B) // this is true

This is just a preview of how Smart Timers Manager 

works, but you can do much more. See the PDF documentation 

for complete interface. 




